Trees in commtative nil-semigroups of index two
Václav Flaška, A. Jančařík, Vítězslav Kala, Tomáš Kepka (2007)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Václav Flaška, A. Jančařík, Vítězslav Kala, Tomáš Kepka (2007)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
F. Pastijn (1975)
Semigroup forum
Similarity:
Kyohei Kozawa, Yota Otachi (2011)
Discussiones Mathematicae Graph Theory
Similarity:
Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.
S. Lajos (1965)
Matematički Vesnik
Similarity:
T. Niedbalska (1978)
Colloquium Mathematicae
Similarity:
P. A. Meyer (1982)
Recherche Coopérative sur Programme n°25
Similarity:
Peter M. Higgins (1988)
Colloquium Mathematicae
Similarity:
A. Varisco, A. Cherubini (1981)
Semigroup forum
Similarity:
Mridul K. Sen, Sumanta Chattopadhyay (2008)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
Let S = {a,b,c,...} and Γ = {α,β,γ,...} be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.