Displaying similar documents to “On strong digraphs with a prescribed ultracenter”

Classifying trees with edge-deleted central appendage number 2

Shubhangi Stalder, Linda Eroh, John Koker, Hosien S. Moghadam, Steven J. Winters (2009)

Mathematica Bohemica

Similarity:

The eccentricity of a vertex v of a connected graph G is the distance from v to a vertex farthest from v in G . The center of G is the subgraph of G induced by the vertices having minimum eccentricity. For a vertex v in a 2-edge-connected graph G , the edge-deleted eccentricity of v is defined to be the maximum eccentricity of v in G - e over all edges e of G . The edge-deleted center of G is the subgraph induced by those vertices of G having minimum edge-deleted eccentricity. The edge-deleted...

Strong asymmetric digraphs with prescribed interior and annulus

Steven J. Winters (2001)

Czechoslovak Mathematical Journal

Similarity:

The directed distance d ( u , v ) from u to v in a strong digraph D is the length of a shortest u - v path in D . The eccentricity e ( v ) of a vertex v in D is the directed distance from v to a vertex furthest from v in D . The center and periphery of a strong digraph are two well known subdigraphs induced by those vertices of minimum and maximum eccentricities, respectively. We introduce the interior and annulus of a digraph which are two induced subdigraphs involving the remaining vertices. Several results...