The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On strong digraphs with a prescribed ultracenter”

Classifying trees with edge-deleted central appendage number 2

Shubhangi Stalder, Linda Eroh, John Koker, Hosien S. Moghadam, Steven J. Winters (2009)

Mathematica Bohemica

Similarity:

The eccentricity of a vertex v of a connected graph G is the distance from v to a vertex farthest from v in G . The center of G is the subgraph of G induced by the vertices having minimum eccentricity. For a vertex v in a 2-edge-connected graph G , the edge-deleted eccentricity of v is defined to be the maximum eccentricity of v in G - e over all edges e of G . The edge-deleted center of G is the subgraph induced by those vertices of G having minimum edge-deleted eccentricity. The edge-deleted...

Strong asymmetric digraphs with prescribed interior and annulus

Steven J. Winters (2001)

Czechoslovak Mathematical Journal

Similarity:

The directed distance d ( u , v ) from u to v in a strong digraph D is the length of a shortest u - v path in D . The eccentricity e ( v ) of a vertex v in D is the directed distance from v to a vertex furthest from v in D . The center and periphery of a strong digraph are two well known subdigraphs induced by those vertices of minimum and maximum eccentricities, respectively. We introduce the interior and annulus of a digraph which are two induced subdigraphs involving the remaining vertices. Several results...