The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An algebraic characterization of geodetic graphs”

The induced paths in a connected graph and a ternary relation determined by them

Ladislav Nebeský (2002)

Mathematica Bohemica

Similarity:

By a ternary structure we mean an ordered pair ( X 0 , T 0 ) , where X 0 is a finite nonempty set and T 0 is a ternary relation on X 0 . By the underlying graph of a ternary structure ( X 0 , T 0 ) we mean the (undirected) graph G with the properties that X 0 is its vertex set and distinct vertices u and v of G are adjacent if and only if { x X 0 T 0 ( u , x , v ) } { x X 0 T 0 ( v , x , u ) } = { u , v } . A ternary structure ( X 0 , T 0 ) is said to be the B-structure of a connected graph G if X 0 is the vertex set of G and the following statement holds for all u , x , y X 0 : T 0 ( x , u , y ) if and only if u belongs to an...

A tree as a finite nonempty set with a binary operation

Ladislav Nebeský (2000)

Mathematica Bohemica

Similarity:

A (finite) acyclic connected graph is called a tree. Let W be a finite nonempty set, and let H ( W ) be the set of all trees T with the property that W is the vertex set of T . We will find a one-to-one correspondence between H ( W ) and the set of all binary operations on W which satisfy a certain set of three axioms (stated in this note).

A new approach to chordal graphs

Ladislav Nebeský (2007)

Czechoslovak Mathematical Journal

Similarity:

By a chordal graph is meant a graph with no induced cycle of length 4 . By a ternary system is meant an ordered pair ( W , T ) , where W is a finite nonempty set, and T W × W × W . Ternary systems satisfying certain axioms (A1)–(A5) are studied in this paper; note that these axioms can be formulated in a language of the first-order logic. For every finite nonempty set W , a bijective mapping from the set of all connected chordal graphs G with V ( G ) = W onto the set of all ternary systems ( W , T ) satisfying the axioms (A1)–(A5)...

Restrained domination in unicyclic graphs

Johannes H. Hattingh, Ernst J. Joubert, Marc Loizeaux, Andrew R. Plummer, Lucas van der Merwe (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by γ r ( G ) , is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then γ r ( U ) n / 3 , and provide a characterization of graphs achieving this bound.