The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Strong asymmetric digraphs with prescribed interior and annulus”

On a problem of walks

Charles Delorme, Marie-Claude Heydemann (1999)

Annales de l'institut Fourier

Similarity:

In 1995, F. Jaeger and M.-C. Heydemann began to work on a conjecture on binary operations which are related to homomorphisms of De Bruijn digraphs. For this, they have considered the class of digraphs G such that for any integer k , G has exactly n walks of length k , where n is the order of G . Recently, C. Delorme has obtained some results on the original conjecture. The aim of this paper is to recall the conjecture and to report where all the authors arrived.

Cyclically k-partite digraphs and k-kernels

Hortensia Galeana-Sánchez, César Hernández-Cruz (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N then d(u,v) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. A digraph D is cyclically k-partite if there exists a partition V i i = 0 k - 1 of V(D) such that every arc in D is a V i V i + 1 - a r c (mod k). We give a characterization for an unilateral digraph to be cyclically k-partite through...

k-Kernels and some operations in digraphs

Hortensia Galeana-Sanchez, Laura Pastrana (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph. V(D) denotes the set of vertices of D; a set N ⊆ V(D) is said to be a k-kernel of D if it satisfies the following two conditions: for every pair of different vertices u,v ∈ N it holds that every directed path between them has length at least k and for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-directed path of length at most k-1. In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed...

Kernels in the closure of coloured digraphs

Hortensia Galeana-Sánchez, José de Jesús García-Ruvalcaba (2000)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph with V(D) and A(D) the sets of vertices and arcs of D, respectively. A kernel of D is a set I ⊂ V(D) such that no arc of D joins two vertices of I and for each x ∈ V(D)∖I there is a vertex y ∈ I such that (x,y) ∈ A(D). A digraph is kernel-perfect if every non-empty induced subdigraph of D has a kernel. If D is edge coloured, we define the closure ξ(D) of D the multidigraph with V(ξ(D)) = V(D) and A ( ξ ( D ) ) = i ( u , v ) w i t h c o l o u r i t h e r e e x i s t s a m o n o c h r o m a t i c p a t h o f c o l o u r i f r o m t h e v e r t e x u t o t h e v e r t e x v c o n t a i n e d i n D . Let T₃ and C₃ denote the transitive tournament of order 3 and the 3-cycle,...