Displaying similar documents to “Symmetries in finite order variational sequences”

Generalized Jacobi morphisms in variational sequences

Francaviglia, Mauro, Palese, Marcella

Similarity:

Summary: We provide a geometric interpretation of generalized Jacobi morphisms in the framework of finite order variational sequences. Jacobi morphisms arise classically as an outcome of an invariant decomposition of the second variation of a Lagrangian. Here they are characterized in the context of generalized Lagrangian symmetries in terms of variational Lie derivatives of generalized Euler-Lagrange morphisms. We introduce the variational vertical derivative and stress its link with...

Second variational derivative of local variational problems and conservation laws

Marcella Palese, Ekkehart Winterroth, E. Garrone (2011)

Archivum Mathematicum

Similarity:

We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we...