Displaying similar documents to “Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations”

A note on the Cauchy problem for first order linear differential equations with a deviating argument

Robert Hakl, Alexander Lomtatidze (2002)

Archivum Mathematicum

Similarity:

Conditions for the existence and uniqueness of a solution of the Cauchy problem u ' ( t ) = p ( t ) u ( τ ( t ) ) + q ( t ) , u ( a ) = c , established in [2], are formulated more precisely and refined for the special case, where the function τ maps the interval ] a , b [ into some subinterval [ τ 0 , τ 1 ] [ a , b ] , which can be degenerated to a point.

On an antiperiodic type boundary value problem for first order linear functional differential equations

Robert Hakl, Alexander Lomtatidze, Jiří Šremr (2002)

Archivum Mathematicum

Similarity:

Nonimprovable, in a certain sense, sufficient conditions for the unique solvability of the boundary value problem u ' ( t ) = ( u ) ( t ) + q ( t ) , u ( a ) + λ u ( b ) = c are established, where : C ( [ a , b ] ; R ) L ( [ a , b ] ; R ) is a linear bounded operator, q L ( [ a , b ] ; R ) , λ R + , and c R . The question on the dimension of the solution space of the homogeneous problem u ' ( t ) = ( u ) ( t ) , u ( a ) + λ u ( b ) = 0 is discussed as well.