Displaying similar documents to “On oscillation of solutions of forced nonlinear neutral differential equations of higher order”

Oscillation of a higher order neutral differential equation with a sub-linear delay term and positive and negative coefficients

Julio G. Dix, Dillip Kumar Ghose, Radhanath Rath (2009)

Mathematica Bohemica

Similarity:

We obtain sufficient conditions for every solution of the differential equation [ y ( t ) - p ( t ) y ( r ( t ) ) ] ( n ) + v ( t ) G ( y ( g ( t ) ) ) - u ( t ) H ( y ( h ( t ) ) ) = f ( t ) to oscillate or to tend to zero as t approaches infinity. In particular, we extend the results of Karpuz, Rath and Padhy (2008) to the case when G has sub-linear growth at infinity. Our results also apply to the neutral equation [ y ( t ) - p ( t ) y ( r ( t ) ) ] ( n ) + q ( t ) G ( y ( g ( t ) ) ) = f ( t ) when q ( t ) has sign changes. Both bounded and unbounded solutions are consideted here; thus some known results are expanded.

Oscillation of solutions of non-linear neutral delay differential equations of higher order for p ( t ) = ± 1

Radhanath N. Rath, Laxmi N. Padhy, Niyati Misra (2004)

Archivum Mathematicum

Similarity:

In this paper, the oscillation criteria for solutions of the neutral delay differential equation (NDDE) y ( t ) - p ( t ) y ( t - τ ) ( n ) + α Q ( t ) G y ( t - σ ) = f ( t ) has been studied where p ( t ) = 1 or p ( t ) 0 , α = ± 1 , Q C [ 0 , ) , R + , f C ( [ 0 , ) , R ) , G C ( R , R ) . This work improves and generalizes some recent results and answer some questions that are raised in [1].