Displaying similar documents to “On the minus domination number of graphs”

Signed total domination number of a graph

Bohdan Zelinka (2001)

Czechoslovak Mathematical Journal

Similarity:

The signed total domination number of a graph is a certain variant of the domination number. If v is a vertex of a graph G , then N ( v ) is its oper neighbourhood, i.e. the set of all vertices adjacent to v in G . A mapping f : V ( G ) { - 1 , 1 } , where V ( G ) is the vertex set of G , is called a signed total dominating function (STDF) on G , if x N ( v ) f ( x ) 1 for each v V ( G ) . The minimum of values x V ( G ) f ( x ) , taken over all STDF’s of G , is called the signed total domination number of G and denoted by γ s t ( G ) . A theorem stating lower bounds for γ s t ( G ) is...

A note on periodicity of the 2-distance operator

Bohdan Zelinka (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The paper solves one problem by E. Prisner concerning the 2-distance operator T₂. This is an operator on the class C f of all finite undirected graphs. If G is a graph from C f , then T₂(G) is the graph with the same vertex set as G in which two vertices are adjacent if and only if their distance in G is 2. E. Prisner asks whether the periodicity ≥ 3 is possible for T₂. In this paper an affirmative answer is given. A result concerning the periodicity 2 is added.

Restrained domination in unicyclic graphs

Johannes H. Hattingh, Ernst J. Joubert, Marc Loizeaux, Andrew R. Plummer, Lucas van der Merwe (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by γ r ( G ) , is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then γ r ( U ) n / 3 , and provide a characterization of graphs achieving this bound.

Remarks on partially square graphs, hamiltonicity and circumference

Hamamache Kheddouci (2001)

Discussiones Mathematicae Graph Theory

Similarity:

Given a graph G, its partially square graph G* is a graph obtained by adding an edge (u,v) for each pair u, v of vertices of G at distance 2 whenever the vertices u and v have a common neighbor x satisfying the condition N G ( x ) N G [ u ] N G [ v ] , where N G [ x ] = N G ( x ) x . In the case where G is a claw-free graph, G* is equal to G². We define σ ° = m i n x S d G ( x ) : S i s a n i n d e p e n d e n t s e t i n G * a n d | S | = t . We give for hamiltonicity and circumference new sufficient conditions depending on σ° and we improve some known results.

On a problem concerning k -subdomination numbers of graphs

Bohdan Zelinka (2003)

Czechoslovak Mathematical Journal

Similarity:

One of numerical invariants concerning domination in graphs is the k -subdomination number γ k S - 11 ( G ) of a graph G . A conjecture concerning it was expressed by J. H. Hattingh, namely that for any connected graph G with n vertices and any k with 1 2 n < k n the inequality γ k S - 11 ( G ) 2 k - n holds. This paper presents a simple counterexample which disproves this conjecture. This counterexample is the graph of the three-dimensional cube and k = 5 .

On the order of certain close to regular graphs without a matching of given size

Sabine Klinkenberg, Lutz Volkmann (2007)

Czechoslovak Mathematical Journal

Similarity:

A graph G is a { d , d + k } -graph, if one vertex has degree d + k and the remaining vertices of G have degree d . In the special case of k = 0 , the graph G is d -regular. Let k , p 0 and d , n 1 be integers such that n and p are of the same parity. If G is a connected { d , d + k } -graph of order n without a matching M of size 2 | M | = n - p , then we show in this paper the following: If d = 2 , then k 2 ( p + 2 ) and (i) n k + p + 6 . If d 3 is odd and t an integer with 1 t p + 2 , then (ii) n d + k + 1 for k d ( p + 2 ) , (iii) n d ( p + 3 ) + 2 t + 1 for d ( p + 2 - t ) + t k d ( p + 3 - t ) + t - 3 , (iv) n d ( p + 3 ) + 2 p + 7 for k p . If d 4 is even, then (v) n d + k + 2 - η for k d ( p + 3 ) + p + 4 + η , (vi) n d + k + p + 2 - 2 t = d ( p + 4 ) + p + 6 for k = d ( p + 3 ) + 4 + 2 t and p 1 ,...

A note on the independent domination number of subset graph

Xue-Gang Chen, De-xiang Ma, Hua Ming Xing, Liang Sun (2005)

Czechoslovak Mathematical Journal

Similarity:

The independent domination number i ( G ) (independent number β ( G ) ) is the minimum (maximum) cardinality among all maximal independent sets of G . Haviland (1995) conjectured that any connected regular graph G of order n and degree δ 1 2 n satisfies i ( G ) 2 n 3 δ 1 2 δ . For 1 k l m , the subset graph S m ( k , l ) is the bipartite graph whose vertices are the k - and l -subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for i ( S m ( k , l ) ) and...