Displaying similar documents to “Weak and extra-weak type inequalities for the maximal operator and the Hilbert transform”

Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator

S. Bloom, R. Kerman (1994)

Studia Mathematica

Similarity:

Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies Δ 2 . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.

Two-weight weak type maximal inequalities in Orlicz classes

Luboš Pick (1991)

Studia Mathematica

Similarity:

Necessary and sufficient conditions are shown in order that the inequalities of the form ϱ ( M μ f > λ ) Φ ( λ ) C ʃ X Ψ ( C | f ( x ) | ) σ ( x ) d μ , or ϱ ( M μ f > λ ) C ʃ X Φ ( C λ - 1 | f ( x ) | ) σ ( x ) d μ hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, M μ is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.