Note on perfect and multiply perfect numbers
McCarthy, Paul J. (1957)
Portugaliae mathematica
Similarity:
McCarthy, Paul J. (1957)
Portugaliae mathematica
Similarity:
Tomohiro Yamada (2005)
Colloquium Mathematicae
Similarity:
We show that there is an effectively computable upper bound of odd perfect numbers whose Euler factors are powers of fixed exponent.
Asadulla, Syed (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Min Tang, Xiao-Zhi Ren, Meng Li (2013)
Colloquium Mathematicae
Similarity:
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.
Gimbel, Steven, Jaroma, John H. (2003)
Integers
Similarity:
Asadulla, Syed (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
McDaniel, Wayne L. (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. Artuhov (1973)
Acta Arithmetica
Similarity:
P. John, H. Sachs, H. Zernitz (1987)
Applicationes Mathematicae
Similarity:
Robert W. Heath, Ernest A. Michael (1971)
Compositio Mathematica
Similarity:
Tošić, Ratko, Vojvodić, Dušan (2000)
Novi Sad Journal of Mathematics
Similarity: