The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a characterization of probability measures on Boolean algebras and some orthomodular lattices”

Didactical note: probabilistic conditionality in a Boolean algebra.

Enric Trillas, Claudi Alsina, Settimo Termini (1996)

Mathware and Soft Computing

Similarity:

This note deals with two logical topics and concerns Boolean Algebras from an elementary point of view. First we consider the class of operations on a Boolean Algebra that can be used for modelling If-then propositions. These operations, or Conditionals, are characterized under the hypothesis that they only obey to the Modus Ponens-Inequality, and it is shown that only six of them are boolean two-place functions. Is the Conditional Probability the Probability of a Conditional? This problem...

The elementary-equivalence classes of clopen algebras of P-spaces

Brian Wynne (2008)

Fundamenta Mathematicae

Similarity:

Two Boolean algebras are elementarily equivalent if and only if they satisfy the same first-order statements in the language of Boolean algebras. We prove that every Boolean algebra is elementarily equivalent to the algebra of clopen subsets of a normal P-space.