On generalizations of the Pompeiu functional equation.
Kannappan, Pl., Sahoo, P.K. (1998)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Kannappan, Pl., Sahoo, P.K. (1998)
International Journal of Mathematics and Mathematical Sciences
Similarity:
N. G. de Bruijn (1966)
Colloquium Mathematicae
Similarity:
A. Alexiewicz (1948)
Colloquium Mathematicae
Similarity:
Mirjana Malenica (1981)
Publications de l'Institut Mathématique
Similarity:
Ž. Mijajlović (1972)
Publications de l'Institut Mathématique
Similarity:
Ferreira, A.V. (1967)
Portugaliae mathematica
Similarity:
K. Urbanik (1957)
Colloquium Mathematicum
Similarity:
H. Światak (1970)
Annales Polonici Mathematici
Similarity:
Palaniappan Kannappan (1995)
Mathware and Soft Computing
Similarity:
Among normal linear spaces, the inner product spaces (i.p.s.) are particularly interesting. Many characterizations of i.p.s. among linear spaces are known using various functional equations. Three functional equations characterizations of i.p.s. are based on the Frchet condition, the Jordan and von Neumann identity and the Ptolemaic inequality respectively. The object of this paper is to solve generalizations of these functional equations.
J. Aczél (1964)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
R. Sikorski (1959)
Studia Mathematica
Similarity: