The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Dually residuated -monoids having no non-trivial convex subalgebras”

Lexicographic extensions of dually residuated lattice ordered monoids

Jiří Rachůnek, Dana Šalounová (2004)

Mathematica Bohemica

Similarity:

Dually residuated lattice ordered monoids ( D R -monoids) are common generalizations of, e.g., lattice ordered groups, Brouwerian algebras and algebras of logics behind fuzzy reasonings ( M V -algebras, B L -algebras) and their non-commutative variants ( G M V -algebras, pseudo B L -algebras). In the paper, lex-extensions and lex-ideals of D R -monoids (which need not be commutative or bounded) satisfying a certain natural condition are studied.

Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids

Jan Kühr (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

Lattice-ordered groups, as well as G M V -algebras (pseudo M V -algebras), are both particular cases of dually residuated lattice-ordered monoids ( D R -monoids for short). In the paper we study ideals of lower-bounded D R -monoids including G M V -algebras. Especially, we deal with the connections between ideals of a D R -monoid A and ideals of the lattice reduct of A .

Direct decompositions of dually residuated lattice-ordered monoids

Jiří Rachůnek, Dana Šalounová (2004)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

The class of dually residuated lattice ordered monoids (DRl-monoids) contains, in an appropriate signature, all l-groups, Brouwerian algebras, MV- and GMV-algebras, BL- and pseudo BL-algebras, etc. In the paper we study direct products and decompositions of DRl-monoids in general and we characterize ideals of DRl-monoids which are direct factors. The results are then applicable to all above mentioned special classes of DRl-monoids.

On ideals of lattice ordered monoids

Milan Jasem (2007)

Mathematica Bohemica

Similarity:

In the paper the notion of an ideal of a lattice ordered monoid A is introduced and relations between ideals of A and congruence relations on A are investigated. Further, it is shown that the set of all ideals of a soft lattice ordered monoid or a negatively ordered monoid partially ordered by inclusion is an algebraic Brouwerian lattice.