Displaying similar documents to “How to recover the gradient of linear elements on nonuniform triangulations”

On discontinuous Galerkin method and semiregular family of triangulations

Aleš Prachař (2006)

Applications of Mathematics

Similarity:

Discretization of second order elliptic partial differential equations by discontinuous Galerkin method often results in numerical schemes with penalties. In this paper we analyze these penalized schemes in the context of quite general triangular meshes satisfying only a semiregularity assumption. A new (modified) penalty term is presented and theoretical properties are proven together with illustrative numerical results.

Mimetic finite differences for elliptic problems

Franco Brezzi, Annalisa Buffa, Konstantin Lipnikov (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent H 1 norm are derived.