Displaying similar documents to “Shape optimization of materially non-linear bodies in contact”

Shape optimization of elasto-plastic bodies

Zuzana Dimitrovová (2001)

Applications of Mathematics

Similarity:

Existence of an optimal shape of a deformable body made from a physically nonlinear material obeying a specific nonlinear generalized Hooke’s law (in fact, the so called deformation theory of plasticity is invoked in this case) is proved. Approximation of the problem by finite elements is also discussed.

A note on contact shape optimization with semicoercive state problems

Jaroslav Haslinger (2002)

Applications of Mathematics

Similarity:

This note deals with contact shape optimization for problems involving “floating” structures. The boundedness of solutions to state problems with respect to admissible domains, which is the basic step in the existence analysis, is a consequence of Korn’s inequality in coercive cases. In semicoercive cases (meaning that floating bodies are admitted), the Korn inequality cannot be directly applied and one has to proceed in another way: to use a decomposition of kinematically admissible...

Contact shape optimization based on the reciprocal variational formulation

Jaroslav Haslinger (1999)

Applications of Mathematics

Similarity:

The paper deals with a class of optimal shape design problems for elastic bodies unilaterally supported by a rigid foundation. Cost and constraint functionals defining the problem depend on contact stresses, i.e. their control is of primal interest. To this end, the so-called reciprocal variational formulation of contact problems making it possible to approximate directly the contact stresses is used. The existence and approximation results are established. The sensitivity analysis...

Topology optimization of quasistatic contact problems

Andrzej Myśliński (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied...