Displaying similar documents to “Finite element solution of the fundamental equations of semiconductor devices. II”

Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition

Dana Říhová-Škabrahová (2001)

Applications of Mathematics

Similarity:

The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ 1 of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and...

Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems

Philippe Angot, Vít Dolejší, Miloslav Feistauer, Jiří Felcman (1998)

Applications of Mathematics

Similarity:

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations...