Displaying similar documents to “Fluid-dynamic equations for reacting gas mixtures”

Computational fluctuating fluid dynamics

John B. Bell, Alejandro L. Garcia, Sarah A. Williams (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper describes the extension of a recently developed numerical solver for the Landau-Lifshitz Navier-Stokes (LLNS) equations to binary mixtures in three dimensions. The LLNS equations incorporate thermal fluctuations into macroscopic hydrodynamics by using white-noise fluxes. These stochastic PDEs are more complicated in three dimensions due to the tensorial form of the correlations for the stochastic fluxes and in mixtures due to couplings of energy and concentration fluxes (, Soret...

Kinetic and hydrodynamic equations for granular media

Mario Pulvirenti (1999)

Journées équations aux dérivées partielles

Similarity:

In this lecture i present some open mathematical problems concerning some PDE arising in the study of one-dimensional models for granular media.

Extended thermodynamics---a theory of symmetric hyperbolic field equations

Ingo Müller (2008)

Applications of Mathematics

Similarity:

Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear differential equations of first order. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation, provide an explicit...

Special finite-difference approximations of flow equations in terms of stream function, vorticity and velocity components for viscous incompressible liquid in curvilinear orthogonal coordinates

Harijs Kalis (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The Navier-Stokes equations written in general orthogonal curvilinear coordinates are reformulated with the use of the stream function, vorticity and velocity components. The resulting system id discretized on general irregular meshes and special monotone finite-difference schemes are derived.