Displaying similar documents to “Quadrature formulas based on the scaling function”

Daubechies wavelets on intervals with application to BVPs

Václav Finěk (2004)

Applications of Mathematics

Similarity:

In this paper, Daubechies wavelets on intervals are investigated. An analytic technique for evaluating various types of integrals containing the scaling functions is proposed; they are compared with classical techniques. Finally, these results are applied to two-point boundary value problems.

Approximation properties of wavelets and relations among scaling moments II

Václav Finěk (2004)

Open Mathematics

Similarity:

A new orthonormality condition for scaling functions is derived. This condition shows a close connection between orthonormality and relations among discrete scaling moments. This new condition in connection with certain approximation properties of scaling functions enables to prove new relations among discrete scaling moments and consequently the same relations for continuous scaling moments.

On the computation of scaling coefficients of Daubechies' wavelets

Dana Černá, Václav Finěk (2004)

Open Mathematics

Similarity:

In the present paper, Daubechies' wavelets and the computation of their scaling coefficients are briefly reviewed. Then a new method of computation is proposed. This method is based on the work [7] concerning a new orthonormality condition and relations among scaling moments, respectively. For filter lengths up to 16, the arising system can be explicitly solved with algebraic methods like Gröbner bases. Its simple structure allows one to find quickly all possible solutions.

On the exact values of coefficients of coiflets

Dana Černá, Václav Finěk, Karel Najzar (2008)

Open Mathematics

Similarity:

In 1989, R. Coifman suggested the design of orthonormal wavelet systems with vanishing moments for both scaling and wavelet functions. They were first constructed by I. Daubechies [15, 16], and she named them coiflets. In this paper, we propose a system of necessary conditions which is redundant free and simpler than the known system due to the elimination of some quadratic conditions, thus the construction of coiflets is simplified and enables us to find the exact values of the scaling...

Construction of Non-MSF Non-MRA Wavelets for L²(ℝ) and H²(ℝ) from MSF Wavelets

Aparna Vyas (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Considering symmetric wavelet sets consisting of four intervals, a class of non-MSF non-MRA wavelets for L²(ℝ) and dilation 2 is obtained. In addition, we obtain a family of non-MSF non-MRA H²-wavelets which includes the one given by Behera [Bull. Polish Acad. Sci. Math. 52 (2004), 169-178].