Displaying similar documents to “Design of predictive LQ controller”

A deterministic LQ tracking problem: parametrisation of the controller

Ľuboš Čirka, Ján Mikleš, Miroslav Fikar (2002)

Kybernetika

Similarity:

The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach...

Robust and nonrobust tracking

Jan Štecha (1998)

Kybernetika

Similarity:

For zero steady state tracking error it is necessary to include n integrators in the control loop in the case of reference signal generated by n integrators. This result can be generalized to arbitrary n unstable modes of the reference generator according to the “internal model principle”. This paper shows an alternative solution of the asymptotic reference signal tracking problem using feedforward. The solution is not robust but gives a feedback controller with reduced complexity. Robust...

Control error dynamic modification as an efficient tool for reduction of effects introduced by actuator constraints

Krzysztof B. Janiszowski (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

A modification of digital controller algorithms, based on the introduction of a virtual reference value, which never exceeds active constraints in the actuator output is presented and investigated for some algorithms used in single-loop control systems. This idea, derived from virtual modification of a control error, can be used in digital control systems subjected to both magnitude and rate constraints. The modification is introduced in the form of on-line adaptation to the control...

Polynomial controller design based on flatness

Frédéric Rotella, Francisco Javier Carillo, Mounir Ayadi (2002)

Kybernetika

Similarity:

By the use of flatness the problem of pole placement, which consists in imposing closed loop system dynamics can be related to tracking. Polynomial controllers for finite-dimensional linear systems can then be designed with very natural choices for high level parameters design. This design leads to a Bezout equation which is independent of the closed loop dynamics but depends only on the system model.