Displaying similar documents to “On the structure at infinity of linear delay systems with application to the disturbance decoupling problem”

Weak structure at infinity and row-by-row decoupling for linear delay systems

Rabah Rabah, Michel Malabre (2004)

Kybernetika

Similarity:

We consider the row-by-row decoupling problem for linear delay systems and show some close connections between the design of a decoupling controller and some particular structures of delay systems, namely the so-called weak structure at infinity. The realization by static state feedback of decoupling precompensators is studied, in particular, generalized state feedback laws which may incorporate derivatives of the delayed new reference.

Infinite-dimensional LMI approach to analysis and synthesis for linear time-delay systems

Kojiro Ikeda, Takehito Azuma, Kenko Uchida (2001)

Kybernetika

Similarity:

This paper considers an analysis and synthesis problem of controllers for linear time-delay systems in the form of delay-dependent memory state feedback, and develops an Linear Matrix Inequality (LMI) approach. First, we present an existence condition and an explicit formula of controllers, which guarantee a prescribed level of L 2 gain of closed loop systems, in terms of infinite-dimensional LMIs. This result is rather general in the sense that it covers, as special cases, some known...

Local asymptotic stability for nonlinear state feedback delay systems

Alfredo Germani, Costanzo Manes, Pierdomenico Pepe (2000)

Kybernetika

Similarity:

This paper considers the problem of output control of nonlinear delay systems by means of state delayed feedback. In previous papers, through the use of a suitable formalism, standard output control problems, such as output regulation, trajectory tracking, disturbance decoupling and model matching, have been solved for a class of nonlinear delay systems. However, in general an output control scheme does not guarantee internal stability of the system. Some results on this issue are presented...