The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On generalized Popov theory for delay systems”

Control of distributed delay systems with uncertainties: a generalized Popov theory approach

Dan Ivanescu, Silviu-Iulian Niculescu, Jean-Michel Dion, Luc Dugard (2001)

Kybernetika

Similarity:

The paper deals with the generalized Popov theory applied to uncertain systems with distributed time delay. Sufficient conditions for stabilizing this class of delayed systems as well as for γ -attenuation achievement are given in terms of algebraic properties of a Popov system via a Liapunov–Krasovskii functional. The considered approach is new in the context of distributed linear time-delay systems and gives some interesting interpretations of H memoryless control problems in terms...

Infinite-dimensional LMI approach to analysis and synthesis for linear time-delay systems

Kojiro Ikeda, Takehito Azuma, Kenko Uchida (2001)

Kybernetika

Similarity:

This paper considers an analysis and synthesis problem of controllers for linear time-delay systems in the form of delay-dependent memory state feedback, and develops an Linear Matrix Inequality (LMI) approach. First, we present an existence condition and an explicit formula of controllers, which guarantee a prescribed level of L 2 gain of closed loop systems, in terms of infinite-dimensional LMIs. This result is rather general in the sense that it covers, as special cases, some known...

Stability and stabilizability of a class of uncertain dynamical systems with delays

Mohammed Saadni, Driss Mehdi (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with a class of uncertain systems with time-varying delays and norm-bounded uncertainty. The stability and stabilizability of this class of systems are considered. Linear Matrix Inequalities (LMI) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established.