Sum-sets of small upper density
Guillaume Bordes (2005)
Acta Arithmetica
Similarity:
Guillaume Bordes (2005)
Acta Arithmetica
Similarity:
Oto Strauch, Janos T. Toth (2002)
Acta Arithmetica
Similarity:
James Foran (1977)
Colloquium Mathematicae
Similarity:
Rzepecka, Genowefa (2015-12-08T07:20:54Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
David Lubell (1971)
Acta Arithmetica
Similarity:
Ladislav Mišík (2002)
Mathematica Slovaca
Similarity:
Michał Lorens (1974)
Annales Polonici Mathematici
Similarity:
Tom Sanders (2011)
Acta Arithmetica
Similarity:
Erwin Kasparek, Michal Lorens (1971)
Annales Polonici Mathematici
Similarity:
Uri Andrews, Mingzhong Cai, David Diamondstone, Carl Jockusch, Steffen Lempp (2016)
Fundamenta Mathematicae
Similarity:
Let r ∈ [0,1]. A set A ⊆ ω is said to be coarsely computable at density r if there is a computable function f such that {n | f(n) = A(n)} has lower density at least r. Our main results are that A is coarsely computable at density 1/2 if A is computably traceable or truth-table reducible to a 1-random set. In the other direction, we show that if a degree a is hyperimmune or PA, then there is an a-computable set which is not coarsely computable at any positive density.