Displaying similar documents to “Flocking control of multi-agent systems with application to nonholonomic multi-robots”

Predictive control for trajectory tracking and decentralized navigation of multi-agent formations

Ionela Prodan, Sorin Olaru, Cristina Stoica, Silviu-Iulian Niculescu (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper addresses a predictive control strategy for a particular class of multi-agent formations with a time-varying topology. The goal is to guarantee tracking capabilities with respect to a reference trajectory which is pre-specified for an agent designed as the leader. Then, the remaining agents, designed as followers, track the position and orientation of the leader. In real-time, a predictive control strategy enhanced with the potential field methodology is used in order to derive...

Adaptive control of uncertain nonholonomic systems in finite time

Jiankui Wang, Guoshan Zhang, Hongyi Li (2009)

Kybernetika

Similarity:

In this paper, the finite-time stabilization problem of chained form systems with parametric uncertainties is investigated. A novel switching control strategy is proposed for adaptive finite-time control design with the help of Lyapunov-based method and time-rescaling technique. With the proposed control law, the uncertain closed-loop system under consideration is finite-time stable within a given settling time. An illustrative example is also given to show the effectiveness of the proposed...

Modeling and control of induction motors

Emmanuel Delaleau, Jean-Paul Louis, Romeo Ortega (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper is devoted to the modeling and control of the induction motor. The well-established field oriented control is recalled and two recent control strategies are exposed, namely the passivity-based control and the flatness-based control.

Robust quasi NID aircraft 3D flight control under sensor noise

Marian J. Błachuta, Valery D. Yurkevich, Konrad Wojciechowski (1999)

Kybernetika

Similarity:

In the paper the design of an aircraft motion controller based on the Dynamic Contraction Method is presented. The control task is formulated as a tracking problem for Euler angles, where the desired decoupled output transients are accomplished under assumption of high-level, high-frequency sensor noise and incomplete information about varying parameters of the system and external disturbances. The resulting controller has a simple form of a combination of a low-order linear dynamical...