Displaying similar documents to “Stability estimating in optimal sequential hypotheses testing”

Optimal sequential multiple hypothesis testing in presence of control variables

Andrey Novikov (2009)

Kybernetika

Similarity:

Suppose that at any stage of a statistical experiment a control variable X that affects the distribution of the observed data Y at this stage can be used. The distribution of Y depends on some unknown parameter θ , and we consider the problem of testing multiple hypotheses H 1 : θ = θ 1 , H 2 : θ = θ 2 , ... , H k : θ = θ k allowing the data to be controlled by X , in the following sequential context. The experiment starts with assigning a value X 1 to the control variable and observing Y 1 as a response. After some analysis, another...

A two-disorder detection problem

Krzysztof Szajowski (1997)

Applicationes Mathematicae

Similarity:

Suppose that the process X = { X n , n } is observed sequentially. There are two random moments of time θ 1 and θ 2 , independent of X, and X is a Markov process given θ 1 and θ 2 . The transition probabilities of X change for the first time at time θ 1 and for the second time at time θ 2 . Our objective is to find a strategy which immediately detects the distribution changes with maximal probability based on observation of X. The corresponding problem of double optimal stopping is constructed. The optimal strategy...

On FU( p )-spaces and p -sequential spaces

Salvador García-Ferreira (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Following Kombarov we say that X is p -sequential, for p α * , if for every non-closed subset A of X there is f α X such that f ( α ) A and f ¯ ( p ) X A . This suggests the following definition due to Comfort and Savchenko, independently: X is a FU( p )-space if for every A X and every x A - there is a function f α A such that f ¯ ( p ) = x . It is not hard to see that p RK q ( RK denotes the Rudin–Keisler order) every p -sequential space is q -sequential every FU( p )-space is a FU( q )-space. We generalize the spaces S n to construct examples of...

Stability estimating in optimal stopping problem

Elena Zaitseva (2008)

Kybernetika

Similarity:

We consider the optimal stopping problem for a discrete-time Markov process on a Borel state space X . It is supposed that an unknown transition probability p ( · | x ) , x X , is approximated by the transition probability p ˜ ( · | x ) , x X , and the stopping rule τ ˜ * , optimal for p ˜ , is applied to the process governed by p . We found an upper bound for the difference between the total expected cost, resulting when applying τ ˜ * , and the minimal total expected cost. The bound given is a constant times sup x X p ( · | x ) - p ˜ ( · | x ) , where · is the...