Integro-local and integral limit theorems on the large deviations of sums of random vectors: Regular distributions.
Borovkov, A.A. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Borovkov, A.A. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Khusnutdinova, N.V. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Bruce C. Berndt, Heng Huat Chan, Liang-Cheng Zhang (1998)
Acta Arithmetica
Similarity:
Kuznetsov, D.S. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Bruce C. Berndt, Heng Huat Chan, Liang-Cheng Zhang (1995)
Acta Arithmetica
Similarity:
Ivanchov, N.I., Pabyrivska, N.V. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Egorov, A.A., Korobkov, M.V. (2001)
Sibirskij Matematicheskij Zhurnal
Similarity:
Mikhajlov, G.A., Burmistrov, A.V. (2000)
Siberian Mathematical Journal
Similarity:
Dragomir, Sever S. (2007)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Hong-Quan Liu (1993)
Acta Arithmetica
Similarity:
1. Introduction. The aim of this paper is to supply a still better result for the problem considered in [2]. Let A(x) denote the number of distinct abelian groups (up to isomorphism) of orders not exceeding x. We shall prove Theorem 1. For any ε > 0, , where C₁, C₂ and C₃ are constants given on page 261 of [2]. Note that 50/199=0.25125..., thus improving our previous exponent 40/159=0.25157... obtained in [2]. To prove Theorem 1, we shall proceed along the line of approach presented...
Pukhnachev, V.V. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity: