The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Cohomology of configuration spaces of complex projective spaces”

Towards one conjecture on collapsing of the Serre spectral sequence

Markl, Martin

Similarity:

[For the entire collection see Zbl 0699.00032.] A fibration F E B is called totally noncohomologuous to zero (TNCZ) with respect to the coefficient field k, if H * ( E ; k ) H * ( F ; k ) is surjective. This is equivalent to saying that π 1 ( B ) acts trivially on H * ( F ; k ) and the Serre spectral sequence collapses at E 2 . S. Halperin conjectured that for c h a r ( k ) = 0 and F a 1-connected rationally elliptic space (i.e., both H * ( F ; 𝒬 ) and π * ( F ) 𝒬 are finite dimensional) such that H * ( F ; k ) vanishes in odd degrees, every fibration F E B is TNCZ. The author proves this...