Displaying similar documents to “On asymptotic behavior of solutions of n -th order Emden-Fowler differential equations with advanced argument”

Asymptotic behaviour of nonoscillatory solutions of the fourth order differential equations

Monika Sobalová (2002)

Archivum Mathematicum

Similarity:

In the paper the fourth order nonlinear differential equation y ( 4 ) + ( q ( t ) y ' ) ' + r ( t ) f ( y ) = 0 , where q C 1 ( [ 0 , ) ) , r C 0 ( [ 0 , ) ) , f C 0 ( R ) , r 0 and f ( x ) x > 0 for x 0 is considered. We investigate the asymptotic behaviour of nonoscillatory solutions and give sufficient conditions under which all nonoscillatory solutions either are unbounded or tend to zero for t .

Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations

Luisa Malaguti, Valentina Taddei (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The paper deals with the quasi-linear ordinary differential equation ( r ( t ) ϕ ( u ' ) ) ' + g ( t , u ) = 0 with t [ 0 , ) . We treat the case when g is not necessarily monotone in its second argument and assume usual conditions on r ( t ) and ϕ ( u ) . We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano,...

On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.

Jana Vampolová (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity p ( t ) u ' ( t ) ' + p ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 on the unbounded domain [ 0 , ) . Function f is locally Lipschitz continuous on and has at least three zeros L 0 < 0 , 0 and L > 0 . The initial value u 0 ( L 0 , L ) { 0 } . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further,...

On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE

Martin Rohleder (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The paper investigates the singular initial problem[4pt] ( p ( t ) u ' ( t ) ) ' + q ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 [4pt] on the half-line [ 0 , ) . Here u 0 [ L 0 , L ] , where L 0 , 0 and L are zeros of f , which is locally Lipschitz continuous on . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Function q is continuous on [ 0 , ) and positive on ( 0 , ) . For specific values u 0 we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for f , p and q it is shown that the problem has for each specified...