The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Nearly antipodal chromatic number a c ' ( P n ) of the path P n

A note on radio antipodal colourings of paths

Riadh Khennoufa, Olivier Togni (2005)

Mathematica Bohemica

Similarity:

The radio antipodal number of a graph G is the smallest integer c such that there exists an assignment f V ( G ) { 1 , 2 , ... , c } satisfying | f ( u ) - f ( v ) | D - d ( u , v ) for every two distinct vertices u and v of G , where D is the diameter of G . In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–69]. We also show the connections between this colouring and radio labelings.

A note on the number of solutions of the generalized Ramanujan-Nagell equation x 2 - D = p n

Yuan-e Zhao, Tingting Wang (2012)

Czechoslovak Mathematical Journal

Similarity:

Let D be a positive integer, and let p be an odd prime with p D . In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for N ( D , p ) , and also prove that if the equation U 2 - D V 2 = - 1 has integer solutions ( U , V ) , the least solution ( u 1 , v 1 ) of the equation u 2 - p v 2 = 1 satisfies p v 1 , and D > C ( p ) , where C ( p ) is an effectively computable...