Displaying similar documents to “On some cohomological properties of the Lie algebra of Euclidean motions”

Characteristic classes of regular Lie algebroids – a sketch

Kubarski, Jan

Similarity:

The discourse begins with a definition of a Lie algebroid which is a vector bundle p : A M over a manifold with an R -Lie algebra structure on the smooth section module and a bundle morphism γ : A T M which induces a Lie algebra morphism on the smooth section modules. If γ has constant rank, the Lie algebroid is called regular. (A monograph on the theory of Lie groupoids and Lie algebroids is published by [Lie groupoids and Lie algebroids in differential geometry (1987; Zbl 0683.53029)].) A principal...

Integrating central extensions of Lie algebras via Lie 2-groups

Christoph Wockel, Chenchang Zhu (2016)

Journal of the European Mathematical Society

Similarity:

The purpose of this paper is to show how central extensions of (possibly infinite-dimensional) Lie algebras integrate to central extensions of étale Lie 2-groups in the sense of [Get09, Hen08]. In finite dimensions, central extensions of Lie algebras integrate to central extensions of Lie groups, a fact which is due to the vanishing of π 2 for each finite-dimensional Lie group. This fact was used by Cartan (in a slightly other guise) to construct the simply connected Lie group associated...

Invariant orders in Lie groups

Neeb, Karl-Hermann

Similarity:

[For the entire collection see Zbl 0742.00067.]The author formulates several theorems about invariant orders in Lie groups (without proofs). The main theorem: a simply connected Lie group G admits a continuous invariant order if and only if its Lie algebra L ( G ) contains a pointed invariant cone. V. M. Gichev has proved this theorem for solvable simply connected Lie groups (1989). If G is solvable and simply connected then all pointed invariant cones W in L ( G ) are global in G (a Lie wedge W L ( G ) ...