Optimal stopping of a sequence of maxima over an unobservable sequence of maxima
K. Szajowski (1984)
Applicationes Mathematicae
Similarity:
K. Szajowski (1984)
Applicationes Mathematicae
Similarity:
K. Szajowski (1982)
Applicationes Mathematicae
Similarity:
Z. Porosiński (1985)
Applicationes Mathematicae
Similarity:
Z. Porosiński (1988)
Applicationes Mathematicae
Similarity:
Petr Dostál (2006)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
A. Styszyński (1984)
Applicationes Mathematicae
Similarity:
Kumar, Ramesh C., Naqib, Fadle M. (1995)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Lee, W.R., Wang, S., Teo, K.L. (1999)
Mathematical Problems in Engineering
Similarity:
Dariusz Socha (2014)
Applicationes Mathematicae
Similarity:
An optimal dividend problem is studied consisting in maximisation of expected discounted dividend payments until ruin time. A solution of this problem for constant premium d and exponentially distributed claims is presented. It is shown that an optimal policy is a barrier policy. Moreover, an analytic way to solve this problem is sketched.
Dean A. Carlson (1984)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
Dean A. Carlson (1984)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
Obadeanu, V., Neamtu, M. (1999)
Novi Sad Journal of Mathematics
Similarity:
Miklós Rásonyi, José G. Rodríguez-Villarreal (2015)
Banach Center Publications
Similarity:
We consider a discrete-time, generically incomplete market model and a behavioural investor with power-like utility and distortion functions. The existence of optimal strategies in this setting has been shown in Carassus-Rásonyi (2015) under certain conditions on the parameters of these power functions. In the present paper we prove the existence of optimal strategies under a different set of conditions on the parameters, identical to the ones in Rásonyi-Rodrigues...