Classification of filiform Lie algebras in dimension 8.
José María Ancochea Bermúdez, Michel Goze (1986)
Extracta Mathematicae
Similarity:
José María Ancochea Bermúdez, Michel Goze (1986)
Extracta Mathematicae
Similarity:
Francisco J. Echarte, José R. Gómez, Juan Núñez (1994)
Extracta Mathematicae
Similarity:
Pilar Benito, Daniel de-la-Concepción (2014)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Any nilpotent Lie algebra is a quotient of a free nilpotent Lie algebra of the same nilindex and type. In this paper we review some nice features of the class of free nilpotent Lie algebras. We will focus on the survey of Lie algebras of derivations and groups of automorphisms of this class of algebras. Three research projects on nilpotent Lie algebras will be mentioned.
Mohammad Reza Rismanchian (2015)
Colloquium Mathematicae
Similarity:
The aim of this work is to obtain the structure of c-covers of c-capable Lie algebras. We also obtain some results on the existence of c-covers and, under some assumptions, we prove the absence of c-covers of Lie algebras.
Cohen, A.M., de Graaf, W.A., Rónyai, L. (1997)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Similarity:
Agaoka, Y. (1999)
Lobachevskii Journal of Mathematics
Similarity:
Galitski, L.Yu., Timashev, D.A. (1999)
Journal of Lie Theory
Similarity:
Schneider, Csaba (2005)
Experimental Mathematics
Similarity:
Chunyue Wang, Qingcheng Zhang (2018)
Czechoslovak Mathematical Journal
Similarity:
We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.
Ivan P. Shestakov, Efim Zelmanov (2008)
Journal of the European Mathematical Society
Similarity:
Generalizing Petrogradsky’s construction, we give examples of infinite-dimensional nil Lie algebras of finite Gelfand–Kirillov dimension over any field of positive characteristic.
L.J. Santharoubane (1983)
Mathematische Annalen
Similarity: