On the role of an intersection property in measure theory - I
Schaerf, H.M. (1949)
Portugaliae mathematica
Similarity:
Schaerf, H.M. (1949)
Portugaliae mathematica
Similarity:
A. Ülger (2007)
Studia Mathematica
Similarity:
Let G be a locally compact abelian group and M(G) its measure algebra. Two measures μ and λ are said to be equivalent if there exists an invertible measure ϖ such that ϖ*μ = λ. The main result of this note is the following: A measure μ is invertible iff |μ̂| ≥ ε on Ĝ for some ε > 0 and μ is equivalent to a measure λ of the form λ = a + θ, where a ∈ L¹(G) and θ ∈ M(G) is an idempotent measure.
Ricardo Faro Rivas, Juan A. Navarro, Juan Sancho (1994)
Extracta Mathematicae
Similarity:
Noboru Endou (2017)
Formalized Mathematics
Similarity:
The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.
Robert Morris Pierce
Similarity:
Józef Banaś, Antonio Martinón (1992)
Mathematica Slovaca
Similarity:
James Fickett, Jan Mycielski (1979)
Colloquium Mathematicae
Similarity:
Li, Jinjun (2009)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Noboru Endou (2016)
Formalized Mathematics
Similarity:
In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.
Robert E. Zink (1966)
Colloquium Mathematicae
Similarity:
Ihor Stasyuk, Edward D. Tymchatyn (2013)
Colloquium Mathematicae
Similarity:
Spaces of finite n-dimensional Hausdorff measure are an important generalization of n-dimensional polyhedra. Continua of finite linear measure (also called continua of finite length) were first characterized by Eilenberg in 1938. It is well-known that the property of having finite linear measure is not preserved under finite unions of closed sets. Mauldin proved that if X is a compact metric space which is the union of finitely many closed sets each of which admits a σ-finite linear...
Noboru Endou (2015)
Formalized Mathematics
Similarity:
In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ-field and the measure on it. In general, the existence of the measure on σ-field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ-field. Furthermore,...
Jozef Banas, Antonio Martinón (1990)
Extracta Mathematicae
Similarity:
The notion of a measure of noncompactness turns out to be a very important and useful tool in many branches of mathematical analysis. The current state of this theory and its applications are presented in the books [1,4,11] for example. The notion of a measure of weak noncompactness was introduced by De Blasi [8] and was subsequently used in numerous branches of functional analysis and the theory of differential and integral equations (cf. [2,3,9,10,11], for instance). ...