Displaying similar documents to “A system of axioms for measures on noncompactness”

A characterization of the invertible measures

A. Ülger (2007)

Studia Mathematica

Similarity:

Let G be a locally compact abelian group and M(G) its measure algebra. Two measures μ and λ are said to be equivalent if there exists an invertible measure ϖ such that ϖ*μ = λ. The main result of this note is the following: A measure μ is invertible iff |μ̂| ≥ ε on Ĝ for some ε > 0 and μ is equivalent to a measure λ of the form λ = a + θ, where a ∈ L¹(G) and θ ∈ M(G) is an idempotent measure.

Fubini’s Theorem on Measure

Noboru Endou (2017)

Formalized Mathematics

Similarity:

The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.

Product Pre-Measure

Noboru Endou (2016)

Formalized Mathematics

Similarity:

In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.

Spaces of σ-finite linear measure

Ihor Stasyuk, Edward D. Tymchatyn (2013)

Colloquium Mathematicae

Similarity:

Spaces of finite n-dimensional Hausdorff measure are an important generalization of n-dimensional polyhedra. Continua of finite linear measure (also called continua of finite length) were first characterized by Eilenberg in 1938. It is well-known that the property of having finite linear measure is not preserved under finite unions of closed sets. Mauldin proved that if X is a compact metric space which is the union of finitely many closed sets each of which admits a σ-finite linear...

Construction of Measure from Semialgebra of Sets1

Noboru Endou (2015)

Formalized Mathematics

Similarity:

In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ-field and the measure on it. In general, the existence of the measure on σ-field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ-field. Furthermore,...

Note on measures of noncompactness in Banach sequence spaces.

Jozef Banas, Antonio Martinón (1990)

Extracta Mathematicae

Similarity:

The notion of a measure of noncompactness turns out to be a very important and useful tool in many branches of mathematical analysis. The current state of this theory and its applications are presented in the books [1,4,11] for example. The notion of a measure of weak noncompactness was introduced by De Blasi [8] and was subsequently used in numerous branches of functional analysis and the theory of differential and integral equations (cf. [2,3,9,10,11], for instance). ...