Note on some integral Volterra equations.
W. Okrasinski (1993)
Extracta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
W. Okrasinski (1993)
Extracta Mathematicae
Similarity:
Mydlarczyk, W. (2001)
Journal of Inequalities and Applications [electronic only]
Similarity:
W. Okrasinski (1989)
Extracta Mathematicae
Similarity:
W. Okrasinski (1989)
Extracta Mathematicae
Similarity:
W. Okrasinski (1990)
Extracta Mathematicae
Similarity:
We consider the following Volterra equation: (1) u(x) = ∫0 x k(x-s) g(u(s)) ds, where, k: [0, δ0] → R is an increasing absolutely continuous function such that k(0) = 0 g: [0,+ ∞) → [0,+ ∞) is an increasing absolutely continuous function such that g(0) = 0 and g(u)/u → ∞ as u → 0+ (see [3]). Let us note that (1) has always...
W. Okrasinski (1989)
Extracta Mathematicae
Similarity:
Jesús M. Fernández Castillo, W. Okrasinski (1991)
Extracta Mathematicae
Similarity:
In mathematical models of some physical phenomena a new class of nonlinear Volterra equations appears ([5],[6]). The equations belonging to this class have u = 0 as a solution (trivial solution), but with respect to their physical meaning, nonnegative nontrivial solutions are of prime importance.
W. Mydlarczyk (1991)
Annales Polonici Mathematici
Similarity:
G. Karakostas (1987)
Colloquium Mathematicae
Similarity:
Darwish, Mohamed Abdalla (1999)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
Wojciech Mydlarczyk (1996)
Annales Polonici Mathematici
Similarity:
We study the equation u = k∗g(u) with k such that ln k is convex or concave and g is monotonic. Some necessary and sufficient conditions for the existence of nontrivial continuous solutions u of this equation are given.
Wojciech Mydlarczyk (2012)
Open Mathematics
Similarity:
We consider a convolution-type integral equation u = k ⋆ g(u) on the half line (−∞; a), a ∈ ℝ, with kernel k(x) = x α−1, 0 < α, and function g(u), continuous and nondecreasing, such that g(0) = 0 and 0 < g(u) for 0 < u. We concentrate on the uniqueness problem for this equation, and we prove that if α ∈ (1, 4), then for any two nontrivial solutions u 1, u 2 there exists a constant c ∈ ℝ such that u 2(x) = u 1(x +c), −∞ < x. The results are obtained by applying Hilbert projective...