Antiproximinal ѕets in Banach ѕpaces
S. Cobzaş (1999)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
S. Cobzaş (1999)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Taras Banakh, Ivan Hetman, Katsuro Sakai (2013)
Studia Mathematica
Similarity:
Traoré, S., Volle, M. (1996)
Journal of Convex Analysis
Similarity:
P. Holický, O. F. K. Kalenda, L. Veselý, L. Zajíček (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
On each nonreflexive Banach space X there exists a positive continuous convex function f such that 1/f is not a d.c. function (i.e., a difference of two continuous convex functions). This result together with known ones implies that X is reflexive if and only if each everywhere defined quotient of two continuous convex functions is a d.c. function. Our construction also gives a stronger version of Klee's result concerning renormings of nonreflexive spaces and non-norm-attaining functionals. ...
S. Troyanski (1971)
Studia Mathematica
Similarity:
Qiu, Jing Hui, McKennon, Kelly (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Abdelhakim Maaden (2002)
Extracta Mathematicae
Similarity:
Hoang Tu Y
Similarity:
CONTENTSIntroduction............................................................................................................................................................................... 5§ 1. Finite systems of convex inequalities.......................................................................................................................... 6§ 2. Infinite systems of convex inequalities...........................................................................................................................
Jesús M. F. Castillo, Manuel González, Pier Luigi Papini (2014)
Studia Mathematica
Similarity:
We study different aspects of the representation of weak*-compact convex sets of the bidual X** of a separable Banach space X via a nested sequence of closed convex bounded sets of X.
Charles J.K. Batty (1979)
Mathematische Zeitschrift
Similarity:
I. Monterde, Vicente Montesinos (2009)
Czechoslovak Mathematical Journal
Similarity:
Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual of a locally convex space is the -closure of the union of countably many -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.