On -filiform Lie algebras. I.
Campoamor Stursberg, O.R. (2002)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Campoamor Stursberg, O.R. (2002)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Kurdiani, R., Pirashvili, T. (2002)
Journal of Lie Theory
Similarity:
Bouarroudj, Sofiane, Grozman, Pavel, Leites, Dimitry (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Grozman, P., Leites, D., Poletaeva, E. (2002)
Homology, Homotopy and Applications
Similarity:
Ciccoli, Nicola, Guerra, Lucio (2003)
Journal of Lie Theory
Similarity:
Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P. (2005)
Homology, Homotopy and Applications
Similarity:
José M. Ancochea, Rutwig Campoamor (2001)
Extracta Mathematicae
Similarity:
Siciliano, Salvatore (2003)
Journal of Lie Theory
Similarity:
Campoamor-Stursberg, Rutwig (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Skrypnyk, Taras V. (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
L. M. Camacho, J. R. Gómez, A. J. González (2005)
Extracta Mathematicae
Similarity:
The knowledge of the natural graded algebras of a given class of Lie algebras offers essential information about the structure of the class. So far, the classification of naturally graded Lie algebras is only known for some families of p-filiform Lie algebras. In certain sense, if g is a naturally graded Lie algebra of dimension n, the first case of no p-filiform Lie algebras it happens when the characteristic sequence is (n-3,2,1). We present the classification of a particular family...
Molaei, M.R., Farhangdoost, M.R. (2009)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity: