Displaying similar documents to “Multi-stage genetic fuzzy systems based on the iterative rule learning approach.”

Evolution-fuzzy rule based system with parameterized consequences

Piotr Czekalski (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

While using automated learning methods, the lack of accuracy and poor knowledge generalization are both typical problems for a rule-based system obtained on a given data set. This paper introduces a new method capable of generating an accurate rule-based fuzzy inference system with parameterized consequences using an automated, off-line learning process based on multi-phase evolutionary computing and a training data covering algorithm. The presented method consists of the following steps:...

Evolutionary algorithms and fuzzy sets for discovering temporal rules

Stephen G. Matthews, Mario A. Gongora, Adrian A. Hopgood (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association rules, and using a multi-objective evolutionary algorithm combined with iterative rule learning to mine many rules. Temporal patterns...

A methodology for developing knowledge-based systems.

Juan Luis Castro, José Jesús Castro-Sánchez, Antonio Espin, José Manuel Zurita (1998)

Mathware and Soft Computing

Similarity:

This paper presents a methodology for developing fuzzy knowledge based systems (KBS), which permits a complete automatization. This methodology will be useful for approaching more complex problems that those in which machine learning from examples are successful.

Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning

Robert Czabański (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a "freezing" phase and ε-insensitive learning by solving a system of...

Neural methods for obtaining fuzzy rules.

José Manuel Benítez, Armando Blanco, Miguel Delgado, Ignacio Requena (1996)

Mathware and Soft Computing

Similarity:

In previous papers, we presented an empirical methodology based on Neural Networks for obtaining fuzzy rules which allow a system to be described, using a set of examples with the corresponding inputs and outputs. Now that the previous results have been completed, we present another procedure for obtaining fuzzy rules, also based on Neural Networks with Backpropagation, with no need to establish beforehand the labels or values of the variables that govern the system.

Improvement to the cooperative rules methodology by using the ant colony system algorithm.

Rafael Alcalá, Jorge Casillas, Oscar Cordón, Francisco Herrera (2001)

Mathware and Soft Computing

Similarity:

The cooperative rules (COR) methodology [2] is based on a combinatorial search of cooperative rules performed over a set of previously generated candidate rule consequents. It obtains accurate models preserving the highest interpretability of the linguistic fuzzy rule-based systems. Once the good behavior of the COR methodology has been proven in previous works, this contribution focuses on developing the process with a novel kind of metaheuristic algorithm: the ant colony system one....

Neuro-fuzzy modelling based on a deterministic annealing approach

Robert Czabański (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty...

Application of fuzzy techniques to the design of algorithms in computer vision.

Eduard Montseny, Pilar Sobrevilla (1998)

Mathware and Soft Computing

Similarity:

In this paper a method for the design of algorithms is presented which use fuzzy techniques in order to achieve a better vagueness treatment. A base of rules will be developed in order to design the algorithms. Data fuzzification problem is solved by using probability density functions and probability distribution functions, whereas data analysis is set out associating, to each one of the analysis rules, a fuzzy set which will be obtained by applying an aggregation function which will...

Fuzzy sets in computer vision: an overview.

Pilar Sobrevilla, Eduard Montseny (2003)

Mathware and Soft Computing

Similarity:

Every computer vision level crawl with uncertainty, what makes its management a significant problem to be considered and solved when trying for automated systems for scene analysis and interpretation. This is why fuzzy set theory and fuzzy logic is making many inroads into the handling of uncertainty in various aspects of image processing and computer vision. The growth within the use of fuzzy set theory in computer vision is keeping pace with the use of more complex algorithms...