Displaying similar documents to “Improvement to the cooperative rules methodology by using the ant colony system algorithm.”

Multi-stage genetic fuzzy systems based on the iterative rule learning approach.

Antonio González, Francisco Herrera (1997)

Mathware and Soft Computing

Similarity:

Genetic algorithms (GAs) represent a class of adaptive search techniques inspired by natural evolution mechanisms. The search properties of GAs make them suitable to be used in machine learning processes and for developing fuzzy systems, the so-called genetic fuzzy systems (GFSs). In this contribution, we discuss genetics-based machine learning processes presenting the iterative rule learning approach, and a special kind of GFS, a multi-stage GFS based on the iterative rule learning...

Evolutionary algorithms and fuzzy sets for discovering temporal rules

Stephen G. Matthews, Mario A. Gongora, Adrian A. Hopgood (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association rules, and using a multi-objective evolutionary algorithm combined with iterative rule learning to mine many rules. Temporal patterns...

Refinement of a fuzzy control rule set.

Antonio González, Raúl Pérez (1998)

Mathware and Soft Computing

Similarity:

Fuzzy logic controller performance depends on the fuzzy control rule set. This set can be obtained either by an expert or from a learning algorithm through a set of examples. Recently, we have developed SLAVE an inductive learning algorithm capable of identifying fuzzy systems. The refinement of the rules proposed by SLAVE (or by an expert) can be very important in order to improve the accuracy of the model and in order to simplify the description of the system. The refinement algorithm...

Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning

Robert Czabański (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a "freezing" phase and ε-insensitive learning by solving a system of...

Using genetic feature selection for optimizing user profiles.

Henrik Legind Larsen, Nicolás Marín, María José Martín-Bautista, M. Amparo Vila (2000)

Mathware and Soft Computing

Similarity:

Most of the techniques used in text classification are determined by the occurrences of the words (terms) appearing in the documents, combined with the user feedback over the documents retrieved. However, in our model, the most relevant terms will be selected from a previous fuzzy classification given by the genetic algorithm guided by the user feedback, but using techniques from Machine Learning. A feature selection process is carried out through a Genetic Algorithm in order to find...

A fuzzy system with ε-insensitive learning of premises and consequences of if-then rules

Jacek Łęski, Tomasz Czogała (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

First, a fuzzy system based on ifFirst, a fuzzy system based on if-then rules and with parametric consequences is recalled. Then, it is shown that the globalthen rules and with parametric consequences is recalled. Then, it is shown that the global and local ε-insensitive learning of the above fuzzy system may be presented as a combination of both an ε-insensitive gradient method and solving a system of linear inequalities. Examples are given of using the introduced method to design fuzzy...

Evolution-fuzzy rule based system with parameterized consequences

Piotr Czekalski (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

While using automated learning methods, the lack of accuracy and poor knowledge generalization are both typical problems for a rule-based system obtained on a given data set. This paper introduces a new method capable of generating an accurate rule-based fuzzy inference system with parameterized consequences using an automated, off-line learning process based on multi-phase evolutionary computing and a training data covering algorithm. The presented method consists of the following steps:...

Application of fuzzy techniques to the design of algorithms in computer vision.

Eduard Montseny, Pilar Sobrevilla (1998)

Mathware and Soft Computing

Similarity:

In this paper a method for the design of algorithms is presented which use fuzzy techniques in order to achieve a better vagueness treatment. A base of rules will be developed in order to design the algorithms. Data fuzzification problem is solved by using probability density functions and probability distribution functions, whereas data analysis is set out associating, to each one of the analysis rules, a fuzzy set which will be obtained by applying an aggregation function which will...

Some practical problems in fuzzy sets-based decision support systems.

Alejandro Sancho-Royo, José Luis Verdegay, Edmundo Vergara-Moreno (1999)

Mathware and Soft Computing

Similarity:

In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the question, first, of the practical determination of membership functions, second of the management of the fuzziness in some optimisation models, and finally of using fuzzy rules for terminating conventional...

Fuzzy termination criteria in Knapsack Problem algorithms.

José Luis Verdegay, Edmundo Vergara-Moreno (2000)

Mathware and Soft Computing

Similarity:

Fuzzy rule based termination criteria are introduced in two conventional and exact algorithms solving Knapsack Problems. As a consequence two new solution algorithms are obtained. These algorithms are heuristic ones with a high performance. The efficiency of the algorithms obtained is illustrated by solving some numerical examples.