The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Wiener-Hopf integral operators with PC symbols on spaces with Muckenhoupt weight.”

On the generalized Kato spectrum

Benharrat, Mohammed, Messirdi, Bekkai (2011)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: 47A10. We show that the symmetric difference between the generalized Kato spectrum and the essential spectrum defined in [7] by sec(T) = {l О C ; R(lI-T) is not closed } is at most countable and we also give some relationship between this spectrum and the SVEP theory.

Weighted integral Hankel operators with continuous spectrum

Emilio Fedele, Alexander Pushnitski (2017)

Concrete Operators

Similarity:

Using the Kato-Rosenblum theorem, we describe the absolutely continuous spectrum of a class of weighted integral Hankel operators in L2(ℝ+). These self-adjoint operators generalise the explicitly diagonalisable operator with the integral kernel sαtα(s + t)-1-2α, where α > -1/2. Our analysis can be considered as an extension of J. Howland’s 1992 paper which dealt with the unweighted case, corresponding to α = 0.

Diagonals of Self-adjoint Operators with Finite Spectrum

Marcin Bownik, John Jasper (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Given a finite set X⊆ ℝ we characterize the diagonals of self-adjoint operators with spectrum X. Our result extends the Schur-Horn theorem from a finite-dimensional setting to an infinite-dimensional Hilbert space analogous to Kadison's theorem for orthogonal projections (2002) and the second author's result for operators with three-point spectrum (2013).

Ascent and descent for sets of operators

Derek Kitson (2009)

Studia Mathematica

Similarity:

We extend the notion of ascent and descent for an operator acting on a vector space to sets of operators. If the ascent and descent of a set are both finite then they must be equal and give rise to a canonical decomposition of the space. Algebras of operators, unions of sets and closures of sets are treated. As an application we construct a Browder joint spectrum for commuting tuples of bounded operators which is compact-valued and has the projection property.