Minimizing the presentation of a knot group.
Dugopolski, Mark J. (1985)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Dugopolski, Mark J. (1985)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Friedl, Stefan, Teichner, Peter (2005)
Geometry & Topology
Similarity:
Mohamed Ait Nouh, Akira Yasuhara (2001)
Revista Matemática Complutense
Similarity:
We give a necessary condition for a torus knot to be untied by a single twisting. By using this result, we give infinitely many torus knots that cannot be untied by a single twisting.
Hendricks, Jacob (2004)
Algebraic & Geometric Topology
Similarity:
Livingston, Charles (2004)
Geometry & Topology
Similarity:
S. Jablan, R. Sazdanovic (2003)
Visual Mathematics
Similarity:
Livingston, Charles (2004)
Algebraic & Geometric Topology
Similarity:
Yasutaka Nakanishi (1996)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
This note is a continuation of a former paper, where we have discussed the unknotting number of knots with respect to knot diagrams. We will show that for every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knot there exist crossings whose exchange yields the trivial knot, if the third Tait conjecture is true.
Eric P. Klassen (1993)
Forum mathematicum
Similarity:
Livingston, Charles (2003)
Geometry & Topology
Similarity:
Seiichi Kamada (2001)
Fundamenta Mathematicae
Similarity:
A Wirtinger presentation of a knot group is obtained from a diagram of the knot. T. Yajima showed that for a 2-knot or a closed oriented surface embedded in the Euclidean 4-space, a Wirtinger presentation of the knot group is obtained from a diagram in an analogous way. J. S. Carter and M. Saito generalized the method to non-orientable surfaces in 4-space by cutting non-orientable sheets of their diagrams by some arcs. We give a modification to their method so that one does not need...
Akira Yasuhara (1992)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
We investigate the knots in the boundary of the punctured complex projective plane. Our result gives an affirmative answer to a question raised by Suzuki. As an application, we answer to a question by Mathieu.