On a series of Carlitz involving ultraspherical polynomials
S. K. Chatterjea (1961)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
S. K. Chatterjea (1961)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carsten Schütt (1982)
Studia Mathematica
Similarity:
C. G. G. Van Herk (1951)
Compositio Mathematica
Similarity:
J. Meder (1958)
Annales Polonici Mathematici
Similarity:
Dangovski, Rumen, Petrova, Kalina (2012)
Union of Bulgarian Mathematicians
Similarity:
Румен Руменов Данговски, Калина Христова Петрова - Разглеждаме броя на несамопресичащите се разходки с фиксирана дължина върху целочислената решетка. Завършваме анализа върху случая за лента, с дължина едно. Чрез комбинаторни аргументи получаваме точна формула за броя на разходките върху лента, ограничена отляво и отдясно. Формулата я изследваме и асимптотично. We examine the number of self-avoiding walks with a fixed length on the square grid graph and more specifically...
Kalla, S.L. (1972)
Portugaliae mathematica
Similarity:
Lizhong Peng, Richard Rochberg, Zhijian Wu (1992)
Studia Mathematica
Similarity:
We introduce a sequence of Hankel style operators , k = 1,2,3,..., which act on the Bergman space of the unit disk. These operators are intermediate between the classical big and small Hankel operators. We study the boundedness and Schatten-von Neumann properties of the and show, among other things, that are cut-off at 1/k. Recall that the big Hankel operator is cut-off at 1 and the small Hankel operator at 0.
Carsten Schütt (1984)
Studia Mathematica
Similarity:
L. Carlitz (1970)
Collectanea Mathematica
Similarity:
S. K. Chatterjea (1961)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: