The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Catching sets with quasicircles.”

The boundary absolute continuity of quasiconformal mappings (II).

Juha Heinonen (1996)

Revista Matemática Iberoamericana

Similarity:

In this paper a quite complete picture is given of the absolute continuity on the boundary of a quasiconformal map B → D, where B is the unit 3-ball and D is a Jordan domain in R with boundary 2-rectifiable in the sense of geometric measure theory. Moreover, examples are constructed, for each n ≥ 3, showing that quasiconformal maps from the unit n-ball onto Jordan domains with boundary (n - 1)-rectifiable need not have absolutely continuous boundary values.

Moduli of certain Fano 4-folds.

Walter L. Baily Jr. (2001)

Revista Matemática Iberoamericana

Similarity:

In this brief note we give a proof that a certain family of Fano 4-folds, described below, is complex (locally) complete and effectively parametrized in the sense of Kodaira-Spencer [Ko-Sp].

Quasiconformal mappings onto John domains.

Juha Heinonen (1989)

Revista Matemática Iberoamericana

Similarity:

In this paper we study quasiconformal homeomorphisms of the unit ball B = B = {x ∈ R: |x| < 1} of R onto John domains. We recall that John domains were introduced by F. John in his study of rigidity of local quasi-isometries [J]; the term John domain was coined by O. Martio and J. Sarvas seventeen years later [MS]. From the various equivalent characterizations we shall adapt the following definition based on diameter carrots, cf. [V4], [V5], [NV].

Quasicircles modulo bilipschitz maps.

Steffen Rohde (2001)

Revista Matemática Iberoamericana

Similarity:

We give an explicit construction of all quasicircles, modulo bilipschitz maps. More precisely, we construct a class of planar Jordan curves, using a process similar to the construction of the van Koch snowflake curve. These snowflake-like curves are easily seen to be quasicircles. We prove that for every quasicircle Γ there is a bilipschitz homeomorphism f of the plane and a snowflake-like curve S ∈ with Γ = f(). In the same fashion we obtain a construction of all bilipschitz-homogeneous...