The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Modular deformations and space curve singularities.”

On Hilbert modular forms modulo p: explicit ring structure.

Shoyu Nagaoka (2006)

Revista Matemática Iberoamericana

Similarity:

H. P. F. Swinnerton-Dyer determined the structure of the ring of modular forms modulo p in the elliptic modular case. In this paper, the structure of the ring of Hilbert modular forms modulo p is studied. In the case where the discriminant of corresponding quadratic field is 8 (or 5), the explicit structure is determined.

Perturbing plane cruve singularities.

Eduardo Casas-Alvero, Rosa Peraire (2003)

Revista Matemática Iberoamericana

Similarity:

We describe the singularity of all but finitely-many germs in a pencil generated by two germs of plane curve sharing no tangent.

Multi-parameter paraproducts.

Camil Muscalu, Jill Pipher, Terence Tao, Christoph Thiele (2006)

Revista Matemática Iberoamericana

Similarity:

We prove that classical Coifman-Meyer theorem holds on any polidisc T or arbitrary dimension d ≥ 1.

Solution to the gradient problem of C.E. Weil.

Zoltán Buczolich (2005)

Revista Matemática Iberoamericana

Similarity:

In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set G ⊂ R we construct a differentiable function f: G → R for which there exists an open set Ω ⊂ R such that ∇f(p) ∈ Ω for a p ∈ G but ∇f(q) ∉ Ω for almost every q ∈ G. This shows that the Denjoy-Clarkson property does not hold in higher dimensions.