The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Constant scalar curvature hypersurfaces with spherical boundary in Euclidean space.”

A note on the existence of H-bubbles via perturbation methods.

Verónica Felli (2005)

Revista Matemática Iberoamericana

Similarity:

We study the problem of existence of surfaces in R3 parametrized on the sphere S2 with prescribed mean curvature H in the perturbative case, i.e. for H = Ho + EH1, where Ho is a nonzero constant, H1 is a C2 function and E is a small perturbation parameter.

Existence of H-bubbles in a perturbative setting.

Paolo Caldiroli, Roberta Musina (2004)

Revista Matemática Iberoamericana

Similarity:

Given a C1 function H: R3 --> R, we look for H-bubbles, i.e., surfaces in R3 parametrized by the sphere S2 with mean curvature H at every regular point..

Focusing of spherical nonlinear pulses in R. II. Nonlinear caustic.

Rémi Carles, Jeffrey Rauch (2004)

Revista Matemática Iberoamericana

Similarity:

We study spherical pulse like families of solutions to semilinear wave equattions in space time of dimension 1+3 as the pulses focus at a point and emerge outgoing. We emphasize the scales for which the incoming and outgoing waves behave linearly but the nonlinearity has a strong effect at the focus. The focus crossing is described by a scattering operator for the semilinear equation, which broadens the pulses. The relative errors in our approximate solutions are small in the L norm. ...

Multi-parameter paraproducts.

Camil Muscalu, Jill Pipher, Terence Tao, Christoph Thiele (2006)

Revista Matemática Iberoamericana

Similarity:

We prove that classical Coifman-Meyer theorem holds on any polidisc T or arbitrary dimension d ≥ 1.

Solution to the gradient problem of C.E. Weil.

Zoltán Buczolich (2005)

Revista Matemática Iberoamericana

Similarity:

In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set G ⊂ R we construct a differentiable function f: G → R for which there exists an open set Ω ⊂ R such that ∇f(p) ∈ Ω for a p ∈ G but ∇f(q) ∉ Ω for almost every q ∈ G. This shows that the Denjoy-Clarkson property does not hold in higher dimensions.