The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mapping properties of the elliptic maximal function.”

The existence of positive solution to some asymptotically linear elliptic equations in exterior domains.

Gongbao Li, Gao-Feng Zheng (2006)

Revista Matemática Iberoamericana

Similarity:

In this paper, we are concerned with the asymptotically linear elliptic problem -Δu + λu = f(u), u ∈ H (Ω) in an exterior domain Ω = RO (N ≥ 3) with O a smooth bounded and star-shaped open set, and lim f(t)/t = l, 0 < l < +∞. Using a precise deformation lemma and algebraic topology argument, we prove under our assumptions that the problem possesses at least one positive solution.

Multi-parameter paraproducts.

Camil Muscalu, Jill Pipher, Terence Tao, Christoph Thiele (2006)

Revista Matemática Iberoamericana

Similarity:

We prove that classical Coifman-Meyer theorem holds on any polidisc T or arbitrary dimension d ≥ 1.

Solution to the gradient problem of C.E. Weil.

Zoltán Buczolich (2005)

Revista Matemática Iberoamericana

Similarity:

In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set G ⊂ R we construct a differentiable function f: G → R for which there exists an open set Ω ⊂ R such that ∇f(p) ∈ Ω for a p ∈ G but ∇f(q) ∉ Ω for almost every q ∈ G. This shows that the Denjoy-Clarkson property does not hold in higher dimensions.