Structure theorems for radical extensions of fields
Michael Norris, Williams Vélez (1980)
Acta Arithmetica
Similarity:
Michael Norris, Williams Vélez (1980)
Acta Arithmetica
Similarity:
Gomez-Calderon, Javier (1997)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Gomez-Calderon, Javier (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Eliot T. Jacobson, William Y. Vélez (1990)
Manuscripta mathematica
Similarity:
B. J. Gardner (1975)
Colloquium Mathematicae
Similarity:
Elia, Michele (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Saniga, Metod, Pracna, Petr (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Weinert, H.J., Wiegandt, R. (2003)
Mathematica Pannonica
Similarity:
Morak, Bettina (1999)
Beiträge zur Algebra und Geometrie
Similarity:
Sands, A.D. (1997)
Mathematica Pannonica
Similarity:
Beidar, K.I., Wiegandt, R. (1997)
Beiträge zur Algebra und Geometrie
Similarity:
D. Laksov, M. Rosenlund (2005)
Fundamenta Mathematicae
Similarity:
Various kinds of radicals of ideals in commutative rings with identity appear in many parts of algebra and geometry, in particular in connection with the Hilbert Nullstellensatz, both in the noetherian and the non-noetherian case. All of these radicals, except the *-radicals, have the fundamental, and very useful, property that the radical of an ideal is the intersection of radical primes, that is, primes that are equal to their own radical. It is easy to verify that...
William Vélez (1983)
Acta Arithmetica
Similarity:
B. J. Gardner (1979)
Colloquium Mathematicae
Similarity:
de la Rosa, B., van Niekerk, J.S., Wiegandt, R. (1993)
Mathematica Pannonica
Similarity: