Mapping in normed linear spaces and characterization of orthogonality problem of best approximations in 2-norm.
Singh, Vinai K., Kumar, Santosh (2009)
General Mathematics
Similarity:
Singh, Vinai K., Kumar, Santosh (2009)
General Mathematics
Similarity:
C.-S. Lin (2005)
Colloquium Mathematicae
Similarity:
We first introduce a notion of (a,b,c,d)-orthogonality in a normed linear space, which is a natural generalization of the classical isosceles and Pythagorean orthogonalities, and well known α- and (α,β)-orthogonalities. Then we characterize inner product spaces in several ways, among others, in terms of one orthogonality implying another orthogonality.
Carlos Benítez Rodríguez (1989)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
Orthogonality in inner products is a binary relation that can be expressed in many ways without explicit mention to the inner product of the space. Great part of such definitions have also sense in normed linear spaces. This simple observation is at the base of many concepts of orthogonality in these more general structures. Various authors introduced such concepts over the last fifty years, although the origins of some of the most interesting results that can be obtained for these generalized...
Keiko Narita, Noboru Endou, Yasunari Shidama (2014)
Formalized Mathematics
Similarity:
In this article, we considered bidual spaces and reflexivity of real normed spaces. At first we proved some corollaries applying Hahn-Banach theorem and showed related theorems. In the second section, we proved the norm of dual spaces and defined the natural mapping, from real normed spaces to bidual spaces. We also proved some properties of this mapping. Next, we defined real normed space of R, real number spaces as real normed spaces and proved related theorems. We can regard linear...
Makeev, V.V. (2005)
Journal of Mathematical Sciences (New York)
Similarity:
Kazuhisa Nakasho, Noboru Endou (2015)
Formalized Mathematics
Similarity:
In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the...
Kazuhisa Nakasho, Yuichi Futa, Yasunari Shidama (2014)
Formalized Mathematics
Similarity:
In this article, we formalize topological properties of real normed spaces. In the first part, open and closed, density, separability and sequence and its convergence are discussed. Then we argue properties of real normed subspace. Then we discuss linear functions between real normed speces. Several kinds of subspaces induced by linear functions such as kernel, image and inverse image are considered here. The fact that Lipschitz continuity operators preserve convergence of sequences...
Javier Alonso, Carlos Benítez (1989)
Extracta Mathematicae
Similarity: