Displaying similar documents to “Kalman filter with a non-linear non-Gaussian observation relation.”

State estimation under non-Gaussian Lévy noise: A modified Kalman filtering method

Xu Sun, Jinqiao Duan, Xiaofan Li, Xiangjun Wang (2015)

Banach Center Publications

Similarity:

The Kalman filter is extensively used for state estimation for linear systems under Gaussian noise. When non-Gaussian Lévy noise is present, the conventional Kalman filter may fail to be effective due to the fact that the non-Gaussian Lévy noise may have infinite variance. A modified Kalman filter for linear systems with non-Gaussian Lévy noise is devised. It works effectively with reasonable computational cost. Simulation results are presented to illustrate this non-Gaussian filtering...

SURE shrinkage of gaussian paths and signal identification

Nicolas Privault, Anthony Réveillac (2011)

ESAIM: Probability and Statistics

Similarity:

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.

SURE shrinkage of Gaussian paths and signal identification

Nicolas Privault, Anthony Réveillac (2012)

ESAIM: Probability and Statistics

Similarity:

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.

Geometric influences II: Correlation inequalities and noise sensitivity

Nathan Keller, Elchanan Mossel, Arnab Sen (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In a recent paper, we presented a new definition of influences in product spaces of continuous distributions, and showed that analogues of the most fundamental results on discrete influences, such as the KKL theorem, hold for the new definition in Gaussian space. In this paper we prove Gaussian analogues of two of the central applications of influences: Talagrand’s lower bound on the correlation of increasing subsets of the discrete cube, and the Benjamini–Kalai–Schramm (BKS) noise sensitivity...

The Gaussian zoo.

Renze, John, Wagon, Stan, Wick, Brian (2001)

Experimental Mathematics

Similarity: