Displaying similar documents to “On the control measures of vector measures.”

Structure of measures on topological spaces.

José L. de María, Baltasar Rodríguez Salinas (1989)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

The Radon spaces of type (T), i.e., topological spaces for which every finite Borel measure on Omega is T-additive and T-regular are characterized. The class of these spaces is very wide and in particular it contains the Radon spaces. We extend the results of Marczewski an Sikorski to the sygma-metrizable spaces and to the subsets of the Banach spaces endowed with the weak topology. Finally, the completely additive families of measurable subsets related with the works of Hansell, Koumoullis,...

Uniformly countably additive families of measures and group invariant measures.

Baltasar Rodríguez-Salinas (1998)

Collectanea Mathematica

Similarity:

The extension of finitely additive measures that are invariant under a group permutations or mappings has already been widely studied. We have dealt with this problem previously from the point of view of Hahn-Banach's theorem and von Neumann's measurable groups theory. In this paper we construct countably additive measures from a close point of view, different to that of Haar's Measure Theory.

On the uniform limit of quasi-continuous functions.

Baltasar Rodríguez-Salinas (2001)

RACSAM

Similarity:

Estudiamos cuando el límite uniforme de una red de funciones cuasi-continuas con valores en un espacio localmente convexo X es también una función cuasi-continua, resaltando que esta propiedad depende del menor cardinal de un sistema fundamental de entornos de O en X, y estableciendo condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los resultados de [7] y [10] son mejorados, en relación al Teorema de L. Schwartz.