Supports of Borel measures
Wilfried Seidel (1989)
Fundamenta Mathematicae
Similarity:
Wilfried Seidel (1989)
Fundamenta Mathematicae
Similarity:
José L. de María, Baltasar Rodríguez Salinas (1989)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
The Radon spaces of type (T), i.e., topological spaces for which every finite Borel measure on Omega is T-additive and T-regular are characterized. The class of these spaces is very wide and in particular it contains the Radon spaces. We extend the results of Marczewski an Sikorski to the sygma-metrizable spaces and to the subsets of the Banach spaces endowed with the weak topology. Finally, the completely additive families of measurable subsets related with the works of Hansell, Koumoullis,...
Baltasar Rodríguez-Salinas (1998)
Collectanea Mathematica
Similarity:
The extension of finitely additive measures that are invariant under a group permutations or mappings has already been widely studied. We have dealt with this problem previously from the point of view of Hahn-Banach's theorem and von Neumann's measurable groups theory. In this paper we construct countably additive measures from a close point of view, different to that of Haar's Measure Theory.
L. Drewnowski (1974)
Studia Mathematica
Similarity:
J. FERNÁNDEZ Novoa (1999)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
Jörn Lembcke (1980)
Czechoslovak Mathematical Journal
Similarity:
Maharam, Dorothy (1987)
Portugaliae mathematica
Similarity:
Edward Marczewski (1953)
Fundamenta Mathematicae
Similarity:
Baltasar Rodríguez-Salinas (2001)
RACSAM
Similarity:
Estudiamos cuando el límite uniforme de una red de funciones cuasi-continuas con valores en un espacio localmente convexo X es también una función cuasi-continua, resaltando que esta propiedad depende del menor cardinal de un sistema fundamental de entornos de O en X, y estableciendo condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los resultados de [7] y [10] son mejorados, en relación al Teorema de L. Schwartz.