Displaying similar documents to “Factoring Rosenthal operators.”

Ideals of finite rank operators, intersection properties of balls, and the approximation property

Åsvald Lima, Eve Oja (1999)

Studia Mathematica

Similarity:

We characterize the approximation property of Banach spaces and their dual spaces by the position of finite rank operators in the space of compact operators. In particular, we show that a Banach space E has the approximation property if and only if for all closed subspaces F of c 0 , the space ℱ(F,E) of finite rank operators from F to E has the n-intersection property in the corresponding space K(F,E) of compact operators for all n, or equivalently, ℱ(F,E) is an ideal in K(F,E). ...

Narrow operators and rich subspaces of Banach spaces with the Daugavet property

Vladimir M. Kadets, Roman V. Shvidkoy, Dirk Werner (2001)

Studia Mathematica

Similarity:

Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).