Displaying similar documents to “When is each proper overring of R an S(Eidenberg)-domain?”

Maximal non-Jaffard subrings of a field.

Mabrouk Ben Nasr, Noôman Jarboui (2000)

Publicacions Matemàtiques

Similarity:

A domain R is called a maximal non-Jaffard subring of a field L if R ⊂ L, R is not a Jaffard domain and each domain T such that R ⊂ T ⊆ L is Jaffard. We show that maximal non-Jaffard subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim R = dim R + 1. Further characterizations are given. Maximal non-universally catenarian subrings of their quotient fields are also studied. It is proved that this class of domains coincides with the previous class when...

Absolutely S-domains and pseudo-polynomial rings

Noomen Jarboui, Ihsen Yengui (2002)

Colloquium Mathematicae

Similarity:

A domain R is called an absolutely S-domain (for short, AS-domain) if each domain T such that R ⊆ T ⊆ qf(R) is an S-domain. We show that R is an AS-domain if and only if for each valuation overring V of R and each height one prime ideal q of V, the extension R/(q ∩ R) ⊆ V/q is algebraic. A Noetherian domain R is an AS-domain if and only if dim (R) ≤ 1. In Section 2, we study a class of R-subalgebras of R[X] which share many spectral properties with the polynomial ring R[X] and which...

Intermediate domains between a domain and some intersection of its localizations

Mabrouk Ben Nasr, Noômen Jarboui (2002)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper, we deal with the study of intermediate domains between a domain R and a domain T such that T is an intersection of localizations of R , namely the pair R , T . More precisely, we study the pair R , R d and the pair R , R ~ , where R d = R M M Max R , h t M = dim R and R ~ = R M M Max R , h t M 2 . We prove that, if R is a Jaffard domain, then R , R d n is a Jaffard pair, which generalize [5, Théorème 1.9]. We also show that if R is an S -domain, then R , R ~ is a residually algebraic pair (that is for each intermediate domain S between R and R ~ , if Q is a prime...